65 x 132 Dot Matrix LCD Controller/Driver

FEATURES

- Direct display of RAM data through the display data RAM.
- RAM capacity : $65 \times 132=8580$ bits
- Application Display driver circuits

1/65 duty: 65 common $x 132$ segment
1/49 duty : 49 common $x 132$ segment
1/33 duty : 33 common $x 132$ segment
$1 / 55$ duty : 55 common $x 132$ segment
$1 / 53$ duty : 53 common $x 132$ segment

- High-speed 8 -bit MPU interface (The chip can be connected directly to the both the 80×86 series MPUs and the 68000 series MPUs) /Serial interfaces are supported.
- Abundant command functions

Display data Read/Write, display ON/OFF, Normal/ Reverse display mode, page address set, display start line set, column address set, status read, display all points ON/OFF, LCD bias set, electronic volume, read/modify/write, segment driver direction select, power saver, static indicator, common output status select, V_{5} voltage regulation internal resistor ratio set.

- \quad Static drive circuit equipped internally for indicators. (1 system, with variable flashing speed.)
- Low-power liquid crystal display power supply circuit equipped internally.
Booster circuit (with Boost ratios of Double/Triple/ Quad, where the step-up voltage reference power
supply can be input externally).
High-accuracy voltage adjustment circuit (Thermal gradient $-0.15 \% /{ }^{\circ} \mathrm{C}$ or external input) V_{5} voltage regulator resistors equipped internally, V_{1} to V_{4} voltage divider resistors equipped internally, electronic volume function equipped internally, voltage follower.
- \quad CR oscillator circuit equipped internally (external clock can also be input)
- Extremely low power consumption Operating power when the built-in power supply is used (an example) $95 u A$ (VDD - Vss = VdD - Vss2 $=5.0$ V, Quad voltage, $\mathrm{V}_{5}-\mathrm{VDD}=-11.0 \mathrm{~V}$).
Conditions: When displays pattern OFF and the normal mode is selected.
- Power supply Operable on the low 2.0 voltage Logic power supply VDD - Vss $=4.0 \mathrm{~V}$ to 5.5 V Boost reference voltage: VdD - Vss2 $=2.0 \mathrm{~V}$ to 5.5 V Booster maximum voltage limited VOUT $=-18 \mathrm{~V}$ Liquid crystal drive power supply:
$\mathrm{VDD}-\mathrm{V}_{5}=4.0 \mathrm{~V}$ to 13.0 V
- Wide range of operating temperatures: -40 to $85^{\circ} \mathrm{C}$
- CMOS process
- Shipping forms include bare chip and TCP.
- Not support master/slave mode
- These chips not designed for resistance to light or resistance to radiation.
of a 16×16 dot kanji font).
Moreover, the capacity of the display can be extended through the use of master/slave structures between chips. The chips are able to minimize power consumption because no external operating clock is necessary for the display data RAM read/write operation. Furthermore, because each chip is equipped internally with a low-power LCD driver power supply, resistors for LCD driver power voltage adjustment and a display clock $C R$ oscillator circuit, the ST7565 can be used to create the lowest power display system with the fewest components for high-performance portable devices.

PART NO.	VRS temperature gradient	VRS range
ST7565-0A	$-0.15 \% /{ }^{\circ} \mathrm{C}$	$-2.1 \mathrm{~V} \pm 0.06 \mathrm{~V}$
ST7565-0B	External input	---

PIN DIMENSIONS

- Master/slave mode cancel.
- VOUT maximum -18V
- ST7565-0A Temperature gradient $=-0.15 \% /{ }^{\circ} \mathrm{C}$
- Logic power supply VDD - Vss $=4.0 \mathrm{~V}$ to 5.5 V
- Booster 4 times cancel , 3 times , 2 times worked
- In display reverse mode, used display off command : display pixels all on
- In display reverse mode, used display all point on command : display pixels all off

Pad Center Coordinates

$\begin{aligned} & \text { PAD } \\ & \text { No. } \end{aligned}$	PIN Name	X	Y
001	(NC)	4536	1117
002	FRS	4431	1117
003	FR	4326	1117
004	CL	4221	1117
005	/DOF	4116	1117
006	(NC)	4011	1117
007	VSS	3906	1117
008	/CS1	3801	1117
009	CS2	3696	1117
010	VDD	3591	1117
011	/RES	3486	1117
012	A0	3381	1117
013	VSS	3276	1117
014	WR(R/W)	3171	1117
015	$\mathrm{RD}(\mathrm{E})$	3066	1117
016	VDD	2961	1117
017	D0	2856	1117
018	D1	2751	1117
019	D2	2646	1117
020	D3	2541	1117
021	D4	2436	1117
022	D5	2331	1117
023	D6(SCL)	2226	1117
024	D7(SI)	2121	1117
025	(NC)	2026.5	1117
026	VDD	1942.5	1117
027	VDD	1858.5	1117
028	VDD	1774.5	1117
029	VDD	1690.5	1117
030	VSS	1606.5	1117
031	VSS	1522.5	1117
032	VSS	1438.5	1117
033	VSS2	1354.5	1117
034	VSS2	1270.5	1117
035	VSS2	1186.5	1117
036	VSS2	1102.5	1117
037	(NC)	1018.5	1117
038	VOUT	934.5	1117
039	VOUT	850.5	1117
040	CAP3-	766.5	1117
041	CAP3-	682.5	1117
042	(NC)	598.5	1117
043	CAP1+	514.5	1117
044	CAP1+	430.5	1117
045	CAP1-	346.5	1117
046	CAP1-	262.5	1117
047	CAP2-	178.5	1117

$\begin{aligned} & \hline \text { PAD } \\ & \text { No. } \end{aligned}$	PIN Name	X	Y
048	CAP2-	94.5	1117
049	CAP2+	10.5	1117
050	CAP2+	-73.5	1117
051	VSS	-157.5	1117
052	VSS	-241.5	1117
053	VRS	-325.5	1117
054	VRS	-409.5	1117
055	VDD	-493.5	1117
056	VDD	-577.5	1117
057	V1	-661.5	1117
058	V1	-745.5	1117
059	V2	-829.5	1117
060	V2	-913.5	1117
061	(NC)	-997.5	1117
062	V3	-1081.5	1117
063	V3	-1165.5	1117
064	V4	-1249.5	1117
065	V4	-1333.5	1117
066	V5	-1417.5	1117
067	V5	-1501.5	1117
068	(NC)	-1585.5	1117
069	VR	-1669.5	1117
070	VR	-1753.5	1117
071	VDD	-1837.5	1117
072	VDD	-1921.5	1117
073	TEST1	-2005.5	1117
074	TEST2	-2089.5	1117
075	TEST3	-2173.5	1117
076	TEST4	-2257.5	1117
077	TEST5	-2341.5	1117
078	TEST6	-2425.5	1117
079	TEST7	-2509.5	1117
080	TEST8	-2593.5	1117
081	TEST9	-2677.5	1117
082	TEST10	-2761.5	1117
083	VDD	-2856	1117
084	M/S	-2961	1117
085	CLS	-3066	1117
086	VSS	-3171	1117
087	C86	-3276	1117
088	P/S	-3381	1117
089	VDD	-3486	1117
090	/HPM	-3591	1117
091	VSS	-3696	1117
092	IRS	-3801	1117
093	VDD	-3906	1117
094	SEL1	-4011	1117

ST7565

$\begin{aligned} & \hline \hline \text { PAD } \\ & \text { No. } \\ & \hline \end{aligned}$	PIN Name	X	Y	PAD No.	PIN Name	X	Y
095	VSS	-4116	1117	147	SEG[8]	-3737.5	-1117
096	SEL2	-4221	1117	148	SEG[9]	-3672.5	-1117
097	VDD	-4326	1117	149	SEG[10]	-3607.5	-1117
098	SEL3	-4431	1117	150	SEG[11]	-3542.5	-1117
099	VSS	-4536	1117	151	SEG[12]	-3477.5	-1117
100	(NC)	-4777.5	1119	152	SEG[13]	-3412.5	-1117
101	COM[31]	-4777.5	1040	153	SEG[14]	-3347.5	-1117
102	COM[30]	-4777.5	975	154	SEG[15]	-3282.5	-1117
103	COM[29]	-4777.5	910	155	SEG[16]	-3217.5	-1117
104	COM[28]	-4777.5	845	156	SEG[17]	-3152.5	-1117
105	COM[27]	-4777.5	780	157	SEG[18]	-3087.5	-1117
106	COM[26]	-4777.5	715	158	SEG[19]	-3022.5	-1117
107	COM[25]	-4777.5	650	159	SEG[20]	-2957.5	-1117
108	COM[24]	-4777.5	585	160	SEG[21]	-2892.5	-1117
109	COM[23]	-4777.5	520	161	SEG[22]	-2827.5	-1117
110	COM[22]	-4777.5	455	162	SEG[23]	-2762.5	-1117
111	COM[21]	-4777.5	390	163	SEG[24]	-2697.5	-1117
112	COM[20]	-4777.5	325	164	SEG[25]	-2632.5	-1117
113	COM[19]	-4777.5	260	165	SEG[26]	-2567.5	-1117
114	COM[18]	-4777.5	195	166	SEG[27]	-2502.5	-1117
115	COM[17]	-4777.5	130	167	SEG[28]	-2437.5	-1117
116	COM[16]	-4777.5	65	168	SEG[29]	-2372.5	-1117
117	COM[15]	-4777.5	0	169	SEG[30]	-2307.5	-1117
118	COM[14]	-4777.5	-65	170	SEG[31]	-2242.5	-1117
119	COM[13]	-4777.5	-130	171	SEG[32]	-2177.5	-1117
120	COM[12]	-4777.5	-195	172	SEG[33]	-2112.5	-1117
121	COM[11]	-4777.5	-260	173	SEG[34]	-2047.5	-1117
122	COM[10]	-4777.5	-325	174	SEG[35]	-1982.5	-1117
123	COM[9]	-4777.5	-390	175	SEG[36]	-1917.5	-1117
124	COM[8]	-4777.5	-455	176	SEG[37]	-1852.5	-1117
125	COM[7]	-4777.5	-520	177	SEG[38]	-1787.5	-1117
126	COM[6]	-4777.5	-585	178	SEG[39]	-1722.5	-1117
127	COM[5]	-4777.5	-650	179	SEG[40]	-1657.5	-1117
128	COM[4]	-4777.5	-715	180	SEG[41]	-1592.5	-1117
129	COM[3]	-4777.5	-780	181	SEG[42]	-1527.5	-1117
130	COM[2]	-4777.5	-845	182	SEG[43]	-1462.5	-1117
131	COM[1]	-4777.5	-910	183	SEG[44]	-1397.5	-1117
132	COM[0]	-4777.5	-975	184	SEG[45]	-1332.5	-1117
133	COMS	-4777.5	-1040	185	SEG[46]	-1267.5	-1117
134	(NC)	-4777.5	-1119	186	SEG[47]	-1202.5	-1117
135	(NC)	-4531.5	-1117	187	SEG[48]	-1137.5	-1117
136	(NC)	-4452.5	-1117	188	SEG[49]	-1072.5	-1117
137	(NC)	-4387.5	-1117	189	SEG[50]	-1007.5	-1117
138	(NC)	-4322.5	-1117	190	SEG[51]	-942.5	-1117
139	SEG[0]	-4257.5	-1117	191	SEG[52]	-877.5	-1117
140	SEG[1]	-4192.5	-1117	192	SEG[53]	-812.5	-1117
141	SEG[2]	-4127.5	-1117	193	SEG[54]	-747.5	-1117
142	et4 SEG[3]	-4062.5	-1117	194	SEG[55]	-682.5	-1117
143	SEG[4]	-3997.5	-1117	195	SEG[56]	-617.5	-1117
144	SEG[5]	-3932.5	-1117	196	SEG[57]	-552.5	-1117
145	SEG[6]	-3867.5	-1117	197	SEG[58]	-487.5	-1117
146	SEG[7]	-3802.5	-1117	198	SEG[59]	-422.5	-1117

ST7565

$\begin{aligned} & \hline \hline \text { PAD } \\ & \text { No. } \end{aligned}$	PIN Name	X	Y	$\begin{aligned} & \hline \hline \text { PAD } \\ & \text { No. } \end{aligned}$	PIN Name	X	Y
199	SEG[60]	-357.5	-1117	251	SEG[112]	3022.5	-1117
200	SEG[61]	-292.5	-1117	252	SEG[113]	3087.5	-1117
201	SEG[62]	-227.5	-1117	253	SEG[114]	3152.5	-1117
202	SEG[63]	-162.5	-1117	254	SEG[115]	3217.5	-1117
203	SEG[64]	-97.5	-1117	255	SEG[116]	3282.5	-1117
204	SEG[65]	-32.5	-1117	256	SEG[117]	3347.5	-1117
205	SEG[66]	32.5	-1117	257	SEG[118]	3412.5	-1117
206	SEG[67]	97.5	-1117	258	SEG[119]	3477.5	-1117
207	SEG[68]	162.5	-1117	259	SEG[120]	3542.5	-1117
208	SEG[69]	227.5	-1117	260	SEG[121]	3607.5	-1117
209	SEG[70]	292.5	-1117	261	SEG[122]	3672.5	-1117
210	SEG[71]	357.5	-1117	262	SEG[123]	3737.5	-1117
211	SEG[72]	422.5	-1117	263	SEG[124]	3802.5	-1117
212	SEG[73]	487.5	-1117	264	SEG[125]	3867.5	-1117
213	SEG[74]	552.5	-1117	265	SEG[126]	3932.5	-1117
214	SEG[75]	617.5	-1117	266	SEG[127]	3997.5	-1117
215	SEG[76]	682.5	-1117	267	SEG[128]	4062.5	-1117
216	SEG[77]	747.5	-1117	268	SEG[129]	4127.5	-1117
217	SEG[78]	812.5	-1117	269	SEG[130]	4192.5	-1117
218	SEG[79]	877.5	-1117	270	SEG[131]	4257.5	-1117
219	SEG[80]	942.5	-1117	271	(NC)	4322.5	-1117
220	SEG[81]	1007.5	-1117	272	(NC)	4387.5	-1117
221	SEG[82]	1072.5	-1117	273	(NC)	4452.5	-1117
222	SEG[83]	1137.5	-1117	274	(NC)	4531.5	-1117
223	SEG[84]	1202.5	-1117	275	(NC)	4777.5	-1119
224	SEG[85]	1267.5	-1117	276	COM[32]	4777.5	-1040
225	SEG[86]	1332.5	-1117	277	COM[33]	4777.5	-975
226	SEG[87]	1397.5	-1117	278	COM[34]	4777.5	-910
227	SEG[88]	1462.5	-1117	279	COM[35]	4777.5	-845
228	SEG[89]	1527.5	-1117	280	COM[36]	4777.5	-780
229	SEG[90]	1592.5	-1117	281	COM[37]	4777.5	-715
230	SEG[91]	1657.5	-1117	282	COM[38]	4777.5	-650
231	SEG[92]	1722.5	-1117	283	COM[39]	4777.5	-585
232	SEG[93]	1787.5	-1117	284	COM[40]	4777.5	-520
233	SEG[94]	1852.5	-1117	285	COM[41]	4777.5	-455
234	SEG[95]	1917.5	-1117	286	COM[42]	4777.5	-390
235	SEG[96]	1982.5	-1117	287	COM[43]	4777.5	-325
236	SEG[97]	2047.5	-1117	288	COM[44]	4777.5	-260
237	SEG[98]	2112.5	-1117	289	COM[45]	4777.5	-195
238	SEG[99]	2177.5	-1117	290	COM[46]	4777.5	-130
239	SEG[100]	2242.5	-1117	291	COM[47]	4777.5	-65
240	SEG[101]	2307.5	-1117	292	COM[48]	4777.5	0
241	SEG[102]	2372.5	-1117	293	COM[49]	4777.5	65
242	SEG[103]	2437.5	-1117	294	COM[50]	4777.5	130
243	SEG[104]	2502.5	-1117	295	COM[51]	4777.5	195
244	SEG[105]	2567.5	-1117	296	COM[52]	4777.5	260
245	SEG[106]	2632.5	-1117	297	COM[53]	4777.5	325
246	SEG[107]	2697.5	-1117	298	COM[54]	4777.5	390
247	SEG[108]	2762.5	-1117	299	COM[55]	4777.5	455
248	SEG[109]	2827.5	-1117	300	COM[56]	4777.5	520
249	SEG[110]	2892.5	-1117	301	COM[57]	4777.5	585
250	SEG[111]	2957.5	-1117	302	COM[58]	4777.5	650

PAD No.	PIN Name	X.5	Y
303	COM[59]	4777.5	715
304	COM[60]	4777.5	780
305	COM[61]	4777.5	845
306	COM[62]	4777.5	910
307	COM[63]	4777.5	975
308	COMS	4777.5	1040
309	$(N C)$	4777.5	1119

BLOCK DIAGRAM

Power Supply Pins

Pin Name	I/O	Function					No. of Pins
VDD	Power Supply	Shared with the MPU power supply terminal Vcc.					13
VSS	Power Supply	This is a 0 V terminal connected to the system GND.					9
VSS2	Power Supply	This is the reference power supply for the step-up voltage circuit for the liquid crystal drive.					4
VRS	Power Supply	This is the externally-input VREG power supply for the LCD power supply voltage regulator. These are only enabled for the models with the VREG external input option.					2
V1, V2, V3, V4, V5	Power Supply	Power This is a multi-level power supply for the liquid crystal drive. The voltage Supply applied is determined by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through changing the impedance using an op. amp. Voltage levels are determined based on VDD, and must maintain the relative magnitudes shown below. $\operatorname{VDD}(=\mathrm{V} 0) \geqq \mathrm{V} 1 \geqq \mathrm{~V} 2 \geqq \mathrm{~V} 3 \geqq \mathrm{~V} 4 \geqq \mathrm{~V} 5$ When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command.					10

LCD Power Supply Pins

Pin Name	I/O	Function	No. of Pins
CAP1+	O	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1- terminal.	2
CAP1-	O	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.	2
CAP2+	O	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2- terminal.	2
CAP2-	O	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2+ terminal.	2
CAP3-	O	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1+ terminal.	2
VOUT	O	DC/DC voltage converter. Connect a capacitor between this terminal and VSS.	2
VR	I	Output voltage regulator terminal. Provides the voltage between VDD and V5 through a resistive voltage divider. IRS = """ : the V5 voltage regulator internal resistors are not used. IRS = " " H " the V5 voltage regulator internal resistors are used..	2

[^0]| Pin Name | I/O | Function | | | | | No. of Pins |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { D5 to D0 } \\ & \text { D6 (SCL) } \\ & \text { D7 (SI) } \end{aligned}$ | I/O | This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus.
 When the serial interface is selected ($\mathrm{P} / \mathrm{S}=$ " L ") :
 D7 : serial data input (SI) ; D6 : the serial clock input (SCL).
 D0 to D5 are set to high impedance.
 When the chip select is not active, D0 to D7 are set to high impedance. | | | | | 8 |
| A0 | I | This is connect to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or a command.
 $A 0=$ " H ": Indicates that D0 to D7 are display data.
 $\mathrm{A} 0=$ " L ": Indicates that D0 to D7 are control data. | | | | | 1 |
| RES | I | When /RES is set to " L," the settings are initialized.
 The reset operation is performed by the /RES signal level. | | | | | 1 |
| $\begin{aligned} & \text { CS1 } \\ & \text { CS? } \end{aligned}$ | I | This is the chip select signal. When /CS1 = "L" and CS2 = "H," then the chip select becomes active, and data/command I/O is enabled. | | | | | 2 |
| /RD
 (E) | I | - When connected to an 8080 MPU , this is active LOW.
 (E) This pin is connected to the /RD signal of the 8080 MPU, and the ST7565 series data bus is in an output status when this signal is "L".
 - When connected to a 6800 Series MPU, this is active HIGH.
 This is the 6800 Series MPU enable clock input terminal. | | | | | 1 |
| MR (R/W) | I | - When connected to an 8080 MPU , this is active LOW. (R/W) This terminal connects to the 8080 MPU /WR signal. The signals on the data bus are latched at the rising edge of the MVR signal.
 - When connected to a 6800 Series MPU:
 This is the read/write control signal input terminal.
 When R/W = " H ": Read.
 When R/W = "L": Write. | | | | | 1 |
| C86 | I | This is the MPU interface switch terminal. C86 = "H": 6800 Series MPU interface.
 C86 = "L": 8080 MPU interface. | | | | | 1 |
| P/S | I | This is the $\mathrm{P} / \mathrm{S}=$ " H ":
 P/S = "L":
 The follow
 When P/S /RD (E) an With seria | arallel data input/se arallel data input. rial data input. applies dependin
 "L", D0 to D5 may WR (R/W) are fixe ata input, It is impo | ial data inp
 on the P/S
 " "H", "L" or to either " ssible read | switch termi
 tatus:
 Read/Write
 /RD,/ WR
 Write only
 Open.
 or "L".
 ata from RAN | nal. | 1 |

www.DataSheet4U.com

Pin Name	I/O	Function				No. of Pins
$\begin{aligned} & \text { SEG0 } \\ & \text { to } \\ & \text { SEG131 } \end{aligned}$	O	These are the LCD segment drive outputs. Through a combination of the contents of the display RAM and with the FR signal, a single level is selected from VdD, V2, V3, and V5.				132
		RAM DATA	FR	Output Voltage		
				Normal Display	Reverse Display	
		H	H	VDD	V2	
		H	L	V5	V3	
		L	H	V2	VDD	
		L	L	V3	V5	
		Power save	-			
$\begin{aligned} & \text { COM0 } \\ & \text { to } \\ & \text { COMn } \end{aligned}$	O	These are the LCD common drive outputs.				
		Part No.		COM	TAL	
		ST7565	CO	M0 ~ COM63	64	
		ST7566	CO	M0 ~ COM47	48	
		ST7567	CO	M0 ~ COM31	32	
		ST7568	CO	M0 ~ COM53	54	
		ST7569	CO	M0 ~ COM51	52	
		Through a combination of the contents of the scan data and with the FR signal, a single level is selected from $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{1}$, V_{4}, and V_{5}.				
		Scan Data	FR	Output Voltage		
		H	H	V5		
		H	L	VDD		
		L	H	V1		
		L	L	V4		
		Power save	-	VDD		
COMS	O	These are the COM output terminals for the indicator. Both terminals output the same signal. Leave these open if they are not used.				2

DESCRIPTION OF FUNCTIONS

The MPU Interface

Selecting the Interface Type

With the ST7565 chips, data transfers are done through an 8 -bit parallel data bus (D7 to D0) or through a serial data input (SI). Through selecting the P/S terminal polarity to the
" H " or " L " it is possible to select either parallel data input or serial data input as shown in Table 1.

Table 1

P/S	CS1	CS2	A0	RD	WR	C86	D7	D6	D5~D0
H: Parallel Input	/CS1	CS2	A0	/RD	WR	C86	D7	D6	D5~D0
L: Serial Input	/CS1	CS2	A0	-	-	-	SI	SCL	(HZ)

"-" indicates fixed to either " H " or to "L"

The Parallel Interface

When the parallel interface has been selected ($\mathrm{P} / \mathrm{S}=$ " H "), then it is possible to connect directly to either an

8080-system MPU or a 6800 Series MPU (shown in Table 2) by selecting the C86 terminal to either "H" or to "L".

Table 2

$\mathbf{C 8 6}$ (P/S=H)	CS1	CS2	A0	/RD	/WR	D7~D0
H: 6800 Series	/CS1	CS2	A0	E	R/W	D7~D0
L: 8080 Series	/CS1	CS2	A0	/RD	IWR	D7~D0

Moreover, data bus signals are recognized by a combination
of A0, /RD (E), MR (R/W) signals, as shown in Table 3.
Table 3

Shared	$\mathbf{6 8 0 0}$ Series	$\mathbf{8 0 8 0}$ Series		Function
A0	R/W	/RD	/WR	
1	1	0	1	Reads the display data
1	0	1	0	Writes the display data
0	1	0	1	Status read
0	0	1	0	Write control data (command)

The Serial Interface

When the serial interface has been selected ($P / S=$ " L ") then when the chip is in active state (/CS1 = "L" and CS2 = "H") the serial data input (SI) and the serial clock input (SCL) can be received. The serial data is read from the serial data input pin in the rising edge of the serial clocks D7, D6 through D0, in this order. This data is converted to 8 bits parallel data in the rising edge of the eighth serial clock for the processing.

The A0 input is used to determine whether or the serial data input is display data or command data; when $\mathrm{A} 0=$ " H ", the data is display data, and when $A 0=$ " L " then the data is command data. The AO input is read and used for detection every 8 th rising edge of the serial clock after the chip becomes active. Figure 1 is a serial interface signal chart.

Figure 1

* When the chip is not active, the shift registers and the counter are reset to their initial states.
* Reading is not possible while in serial interface mode.
* Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend that operation be rechecked on the actual equipment.

The Chip Select

The ST7565 have two chip select terminals: /CS1 and CS2. The MPU interface or the serial interface is enabled only when $/ C S 1=$ " L " and $\mathrm{CS} 2=$ " H ".

When the chip select is inactive, D0 to D7 enter a high impedance state, and the AO, /RD, and /WR inputs are inactive. When the serial interface is selected, the shift register and the counter are reset.

The Accessing the Display Data RAM and the Internal Registers

Data transfer at a higher speed is ensured since the MPU is required to satisfy the cycle time (tcyc) requirement alone in accessing the ST7565. Wait time may not be considered.
And, in the ST7565, each time data is sent from the MPU, a type of pipeline process between LSIs is performed through the bus holder attached to the internal data bus. Internal data bus.
For example, when the MPU writes data to the display data RAM, once the data is stored in the bus holder, then it is written to the display data RAM before the next data write cycle. Moreover, when the MPU reads the display data RAM,
the first data read cycle (dummy) stores the read data in the bus holder, and then the data is read from the bus holder to the system bus at the next data read cycle.
There is a certain restriction in the read sequence of the display data RAM. Please be advised that data of the specified address is not generated by the read instruction issued immediately after the address setup. This data is generated in data read of the second time. Thus, a dummy read is required whenever the address setup or write cycle operation is conducted.
This relationship is shown in Figure 2.

The Busy Flag

When the busy flag is " 1 " it indicates that the ST7565 is running internal processes, and at this time no command aside from a status read will be received. The busy flag is outputted to D7 pin with the read instruction. If the cycle time
(tcyc) is maintained, it is not necessary to check for this flag before each command. This makes vast improvements in MPU processing capabilities possible.

Figure 2

www.DataSheet4U.com

Display Data RAM

Display Data RAM

The display data RAM stores the dot data for the LCD. It has a 65 (8 page $\times 8$ bit +1) $\times 132$ bit structure.
as is shown in Figure 3, the D7 to D0 display data from the MPU corresponds to the LCD display common direction, there are few constraints at the time of display data transfer when multiple ST7565 are used, thus and display structures can be created easily and with a high degree of freedom.

Moreover, reading from and writing to the display RAM from the MPU side is performed through the I/O buffer, which is an independent operation from signal reading for the liquid crystal driver. Consequently, even if the display data RAM is accessed asynchronously during liquid crystal display, it will not cause adverse effects on the display (such as flickering).

Figure 3

The Page Address Circuit

Page address of the display data RAM is specified through the Page Address Set Command. The page address must be specified again when changing pages to perform access.

Page address 8 (D3, D2, D1, D0 $=1,0,0,0$) is a special RAM for icons, and only display data D0 is used. (see Figure 4)

The Column Addresses

The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. Moreover, the incrimination of column addresses stops with 83 H . Because the column address is independent of the page address, when moving, for example, from page 0 column 83 H to page 1 column 00 H ,
it is necessary to respectively both the page address and the column address.
Furthermore, as is shown in Table 4, the ADC command (segment driver direction select command) can be used to reverse the relationship between the display data RAM column address and the segment output. Because of this, the constraints on the IC layout when the LCD module is assembled can be minimized. As is shown in Figure 4,

Table 4

SEG Output ADC	SEG0		
(DO) "0"	$0(\mathrm{H})$	\rightarrow Column Address \rightarrow	SEG 131
(D0) "1"	$83(\mathrm{H})$	\leftarrow Column Address \leftarrow	$0(\mathrm{H})$

The Line Address Circuit

The line address circuit, as shown in Table 4, specifies the line address relating to the COM output when the contents of the display data RAM are displayed. Using the display start line address set command, what is normally the top line of the display can be specified (this is the COMO output when the common output mode is normal, and the COM63 output
for ST7565, the detail is shown page. 11 The display area is a 65 line area for the ST7565.
If the line addresses are changed dynamically using the display start line address set command, screen scrolling, page swapping, etc. can be performed.

The Display Data Latch Circuit

The display data latch circuit is a latch that temporarily stores the display data that is output to the liquid crystal driver circuit from the display data RAM.
Because the display normal/reverse status, display ON/OFF

The Oscillator Circuit

This is a CR-type oscillator that produces the display clock. The oscillator circuit is only enabled when $\mathrm{M} / \mathrm{S}=$ " H " and CLS = "H".

Display Timing Generator Circuit

The display timing generator circuit generates the timing signal to the line address circuit and the display data latch circuit using the display clock. The display data is latched into the display data latch circuit synchronized with the display clock, and is output to the data driver output terminal. Reading to the display data liquid crystal driver circuits is completely independent of accesses to the display data RAM by the MPU. Consequently, even if the display data

Two-frame alternating current drive waveform

status, and display all points ON/OFF commands control only the data within the latch, they do not change the data within the display data RAM itself.

When CLS = "L" the oscillation stops, and the external clock is input through the CL terminal.

RAM is accessed asynchronously during liquid crystal display, there is absolutely no adverse effect (such as flickering) on the display.
Moreover, the display timing generator circuit generates the common timing and the liquid crystal alternating current signal (FR) from the display clock. It generates a drive wave form using a 2 frame alternating current drive method, as is shown in Figure 5, for the liquid crystal drive circuit.

RAM
Data

Figure 5

The Common Output Status Select Circuit

In the ST7565 chips, the COM output scan direction can be selected by the common output status select command.
(See Table 6.) Consequently, the constraints in IC layout at the time of LCD module assembly can be minimized.

Table 6

Status	COM Scan Direction				
	$\mathbf{1 / 6 5}$ DUTY	$\mathbf{1 / 4 9}$ DUTY	$\mathbf{1 / 3 3}$ DUTY	$\mathbf{1 / 5 5}$ DUTY	$\mathbf{1 / 5 3}$ DUTY
Normal	COM0 \rightarrow COM63	COM0 \rightarrow COM47	COM0 \rightarrow COM31	COM0 \rightarrow COM53	COM0 \rightarrow COM51
Reverse	COM63 \rightarrow COM0	COM47 \rightarrow COM0	COM31 \rightarrow COM0	COM53 \rightarrow COM0	COM51 \rightarrow COM0

The LCD Driver Circuits

These are a 197-channel, that generate four voltage levels for driving the LCD. The combination of the display data, the COM scan signal, and the FR signal produces the liquid
crystal drive voltage output.
Figure 6 shows examples of the SEG and COM output wave form.

Figure 6

The Power Supply Circuits

The power supply circuits are low-power consumption power supply circuits that generate the voltage levels required for the LCD drivers. They are Booster circuits, voltage regulator circuits, and voltage follower circuits. They are only enabled in master operation. The power supply circuits can turn the Booster circuits, the voltage regulator circuits, and the
voltage follower circuits ON or OFF independently through the use of the Power Control Set command. Consequently, it is possible to make an external power supply and the internal power supply function somewhat in parallel. Table 7 shows the Power Control Set Command 3-bit data control function, and Table 8 shows reference combinations.

Table 7

bit	function	Status	
"0""			
D2	Booster circuit control bit	ON	
D1 OFF			
D0	Voltage regulator circuit control bit (V/R circuit)	ON	
Voltage follower circuit control bit (V/F circuit)	OFF		

The Control Details of Each Bit of the Power Control Set Command

| Use Settings | D2 | D1 | D0 | Voltage
 booster | Voltage
 regulator | Voltage
 follower | External
 voltage
 input | Step-up
 voltage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Only the internal power supply is used | 1 | 1 | 1 | ON | ON | ON | Vss2 | Used |
| Only the voltage regulator circuit and the
 voltage follower circuit are used | 0 | 1 | 1 | OFF | ON | ON | Vout, Vss2 | Open |
| Only the V/F circuit is used | 0 | 0 | 1 | OFF | OFF | ON | $V / 2, V s s 2$ | Open |
| Only the external power supply is used | 0 | 0 | 0 | OFF | OFF | OFF | V_{1} to V_{5} | Open |

Reference Combinations

* The "step-up system terminals" refer CAP1+, CAP1-, CAP2+, CAP2-, and CAP3-.
*While other combinations, not shown above, are also possible, these combinations are not recommended because they have no practical use.

The Step-up Voltage Circuits

Using the step-up voltage circuits equipped within the ST7565 chips it is possible to product a Quad step-up, a Triple step-up, and a Double step-up of the VDD - Vss2 voltage levels.
Quad step-up: Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2-, between CAP1+ and CAP3-, and between Vss2 and vouT, to produce a voltage level in the negative direction at the vout terminal that is 4 times the voltage level between VDD and Vss2.
Triple step-up: Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2- and
between Vss2 and Vout, and short between CAP3- and vout to produce avoltage level in the negative direction at the vout terminal that is 3 times the voltage difference between VDD and Vss2.
Double step-up: Connect capacitor C1 between CAP1+ and CAP1-, and between Vss2 and Vout, leave CAP2+ open, and short between CAP2-, CAP3- and vout to produce a voltage in the negative direction at the vout terminal that Is twice the voltage between vDD and Vss2.
The step-up voltage relationships are shown in Figure 7.

Figure 7

* The Vss2 voltage range must be set so that the Vout terminal voltage does not exceed the absolute maximum rated value.

The Voltage Regulator Circuit

The step-up voltage generated at vout outputs the LCD driver voltage V 5 through the voltage regulator circuit. Because the ST7565 chips have an internal high-accuracy fixed voltage power supply with a $64-l e v e l ~ e l e c t r o n i c ~ v o l u m e ~$ function and internal resistors for the V_{5} voltage regulator,
systems can be constructed without having to include high-accuracy voltage regulator circuit components. Moreover, in the ST7565, Two types of thermal gradients have been prepared as VREG options: (1) approximately $-0.15 \% /{ }^{\circ} \mathrm{C}(2)$ external input (supplied to the vRs terminal)
(A) When the V5 Voltage Regulator Internal Resistors Are Used

Through the use of the V_{5} voltage regulator internal resistors and the electronic volume function the liquid crystal power supply voltage V_{5} can be controlled by commands alone (without adding any external resistors), making it possible to
adjust the liquid crystal display brightness. The V_{5} voltage can be calculated using equation $\mathrm{A}-1$ over the range where | V5 | < | VOUT |.

Figure 8
VREG is the IC-internal fixed voltage supply, and its voltage at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ is as shown in Table 9 .
Table 9

Part no.	Equipment Type	Thermal Gradient	VREG
ST7565-0A	(1) Internal Power Supply	$-0.15 \% /{ }^{\circ} \mathrm{C}$	-2.1 V
ST7565-0B	(2) External Input	-	VRS

a is set to 1 level of 64 possible levels by the electronic volume function depending on the data set in the 6 -bit electronic volume register. Table 10 shows the value for a depending on the electronic volume register settings.
$\mathrm{Rb} / \mathrm{Ra}$ is the V_{5} voltage regulator internal resistor ratio, and can be set to 8 different levels through the V_{5} voltage regulator internal resistor ratio set command. The ($1+\mathrm{Rb} / \mathrm{Ra}$) ratio assumes the values shown in Table 11 depending on the 3-bit data settings in the V_{5} voltage regulator internal resistor ratio register.

Table 10

D5	D4	D3	D2	D1	D0	\mathbf{a}
0	0	0	0	0	0	63
0	0	0	0	0	1	62
0	0	0	0	1	0	61
			\vdots			
1	1	1	1	0	1	\vdots
1	1	1	1	1	0	1
1	1	1	1	1	1	0

V_{5} voltage regulator internal resistance ratio register value and ($1+\mathrm{Rb} / \mathrm{Ra}$) ratio (Reference value)

Table 11				
Register ST7565-0A ST7565-0B D2 D1 D0 $(1)-0.15 \% /{ }^{\circ} \mathrm{C}$ (2) VRS External Input 0 0 0 3.0 1.5 0 0 1 3.5 2.0 0 1 0 4.0 2.5 0 1 1 4.5 3.0 1 0 0 5.0 3.5 1 0 1 5.5 4.0 1 1 0 6.0 4.5 1 1 1 6.5 5.0				

Figures 9 , 10 show V_{5} voltage measured by values of the internal resistance ratio resistor for V_{5} voltage adjustment and electric volume resister for each temperature grade model.

Figure 9 : (1) For ST7565-0A the Thermal Gradient $=-0.15 \% /{ }^{\circ} \mathrm{C}$
The V_{5} voltage as a function of the V_{5} voltage regulator internal resistor ratio register and the electronic volume register.
$\mathrm{Ta}=25^{\circ} \mathrm{C}$ and booster off, regulator, follower on , VOUT=-13V, VSS $=-3 \mathrm{~V}, \mathrm{VRS}=-2.6 \mathrm{~V}$

Figure 10 : (2) For ST7565-0B with External Input VRS
The V_{5} voltage as a function of the V_{5} voltage regulator internal resistor ratio register and the electronic volume register.
Setup example: When selecting $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{5}=-7 \mathrm{~V}$ for an ST7565-0A on which Temperature gradient $=-0.15 \% /{ }^{\circ} \mathrm{C}$. Using Figure 9 and the equation $\mathrm{A}-1$, the following setup is enabled.
At this time, the variable range and the notch width of the V_{5} voltage is, as shown Table 13, as dependent on the electronic volume.
Table 12

Contents	Register					
	D5	D4	D3	D2	D1	D0
For V5 voltage regulator	-	-	-	0	1	0
Electronic Volume	1	0	0	1	0	1

Table 13

V5	Min	Typ	Max	Units
Variable Range	-8.4 (63 levels)	-6.8 (central value)	-5.1 (0 level)	$[\mathrm{V}]$
Notch width		51		$[\mathrm{mV}]$

(B) When an External Resistance is Used (The V5 Voltage Regulator Internal Resistors Are Not Used) (1)

The liquid crystal power supply voltage V_{5} can also be set without using the V_{5} voltage regulator internal resistors (IRS terminal = "L") by adding resistors Ra' and Rb' between VDD and V_{R}, and between V_{R} and V_{5}, respectively. When this is done, the use of the electronic volume function makes it possible to adjust the brightness of the liquid crystal display
by controlling the liquid crystal power supply voltage V_{5} through commands.
In the range where $\left|\mathrm{V}_{5}\right|<\mid$ Vout |, the V_{5} voltage can be calculated using equation B-1 based on the external resistances Ra' and Rb'.

$$
\begin{aligned}
V_{5} & =\left(1+\frac{R b^{\prime}}{R a^{\prime}}\right) \cdot V_{E V} \\
& =\left(1+\frac{R b^{\prime}}{R a^{\prime}}\right) \cdot\left(1-\frac{a}{162}\right) \cdot V_{R E G} \\
& {\left[\because V_{E V}=\left(1-\frac{a}{162}\right) \cdot V_{R E G}\right] }
\end{aligned}
$$

Figure 11
Setup example: When selecting $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{5}=-7 \mathrm{~V}$ for ST7565-0A the temperature gradient $=-0.15 \% /{ }^{\circ} \mathrm{C}$.
When the central value of the electron volume register is
(D5, D4, D3, D2, D1, D0) $=(1,0,0,0,0,0)$, then $a=31$ and
VREG $=-2.1 \mathrm{~V}$ so, according to equation $\mathrm{B}-1$,

$$
\begin{aligned}
& V_{5}=\left(1+\frac{R b^{\prime}}{R a^{\prime}}\right) \cdot\left(1-\frac{a}{162}\right) \cdot V_{R E G} \\
& -T V=\left(1+\frac{R b^{\prime}}{R a^{\prime}}\right) \cdot\left(1-\frac{31}{162}\right) \cdot(-2.1)
\end{aligned}
$$

Moreover, when the value of the current running through

$$
R a^{\prime}+R b^{\prime}=1.4 M \Omega
$$

Consequently, by equations B-2 and B-3,

$$
\begin{aligned}
\frac{R b^{\prime}}{R a^{\prime}} & =3.12 \\
R a^{\prime} & =340 \mathrm{k} \Omega \\
R b^{\prime} & =1060 \mathrm{k} \Omega
\end{aligned}
$$

At this time, the V_{5} voltage variable range and notch width, based on the electron volume function, is as given in Table 14.

Ra' and $R b^{\prime}$ is set to $5 u A$,
Table 14

V $_{5}$	Min	Typ	Max	Units
Variable Range	-8.6 (63 levels)	-7.0 (central value)	-5.3 (0 level)	$[\mathrm{V}]$
Notch width		52		$[\mathrm{mV}]$

ST7565

(C) When External Resistors are Used (The V5 Voltage Regulator Internal Resistors Are Not Used) (2)

When the external resistor described above are used, adding a variable resistor as well makes it possible to perform fine adjustments on Ra' and Rb', to set the liquid crystal drive voltage V_{5}. In this case, the use of the electronic volume function makes it possible to control the liquid crystal power supply voltage V_{5} by commands to adjust the liquid
crystal display brightness
In the range where $\left|\mathrm{V}_{5}\right|<\mid$ Vout | the V_{5} voltage can be calculated by equation $\mathrm{C}-1$ below based on the R_{1} and R_{2} (variable resistor) and R3 settings, where R2 can be subjected to fine adjustments ($\Delta \mathrm{R} 2$).

$$
\begin{aligned}
V_{5} & =\left(1+\frac{R 3+R 2 \Delta R 2}{R 1+\Delta R 2}\right) \cdot V_{E V} \\
& =\left(1+\frac{R 3+R 2-\Delta R 2}{R 1+\Delta R 2}\right) \cdot\left(1-\frac{a}{162}\right) \cdot V_{R E G} \\
& {\left[\because V_{E V}=\left(1-\frac{a}{162}\right) \cdot V_{R E G}\right] }
\end{aligned}
$$

Figure 12

Setup example: When selecting $\mathrm{Ta}=25^{\circ} \mathrm{C}$ and $\mathrm{V} 5=-5$ to -9 V (using R2) for an ST7565-0A the temperature gradient $=-0.15 \% /^{\circ} \mathrm{C}$.
When the central value for the electronic volume register is set at (D5, D4, D3, D2, D1, D0) $=(1,0,0,0,0,0)$, then $\alpha=$ 31 and VReg $=-2.1 \mathrm{~V}$ so, according to equation $\mathrm{C}-1$, when $\Delta R_{2}=0 \Omega$, in order to make $V_{5}=-9 \mathrm{~V}$,

$$
-5 V=\left(1+\frac{R 3}{R 1+R 2}\right) \cdot\left(1-\frac{31}{162}\right) \cdot(-2.1)
$$

When $\Delta R_{2}=R 2$, in order to make $V=-5 V$,

$$
-9 V=\left(1+\frac{R 3+R 2}{R 1}\right) \cdot\left(1-\frac{31}{162}\right) \cdot(-2.1)
$$

When the current flowing VDD and V_{5} is set to 5 uA ,

$$
R 1+R 2+R 2=1.4 M \Omega
$$

With this, according to equation $\mathrm{C}-2, \mathrm{C}-3$ and $\mathrm{C}-4$,

$$
\begin{aligned}
& R 1=264 \mathrm{k} \Omega \\
& R 2=211 \mathrm{k} \Omega \\
& R 3=925 \mathrm{k} \Omega
\end{aligned}
$$

The V_{5} voltage variable range and notch width based on the electron volume function is as shown in Table 15.

Table 15

$\mathbf{V}_{\mathbf{5}}$	Min	Typ	Max	Units
Variable Range	-8.7 (63 levels)	-7.0 (central value)	-5.3 (0 level)	[V]
Notch width		53		$[\mathrm{mV}]$

* When the V_{5} voltage regulator internal resistors or the electronic volume function is used, it is necessary to at least set the voltage regulator circuit and the voltage follower circuit to an operating mode using the power control set commands. Moreover, it is necessary to provide a voltage from Vout when the Booster circuit is OFF.
* The V_{R} terminal is enabled only when the V_{5} voltage regulator internal resistors are not used (i.e. the IRS terminal = "L"). When the V_{5} voltage regulator internal resistors are used (i.e. when the IRS terminal $=$ " H "), then the V_{R} terminal is left open.
* Because the input impedance of the VR terminal is high, it is necessary to take into consideration short leads, shield cables, etc. to handle noise.

The LCD Voltage Generator Circuit

The V_{5} voltage is produced by a resistive voltage divider within the IC, and can be produced at the $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{4} voltage levels required for liquid crystal driving. Moreover,
when the voltage follower changes the impedance, it provides $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ and V_{4} to the liquid crystal drive circuit.

High Power Mode

The power supply circuit equipped in the ST7565 chips has very low power consumption (normal mode: HPM = "H"). However, for LCDs or panels with large loads, this low-power power supply may cause display quality to degrade. When this occurs, setting the HPM terminal to " L " (high power mode) can improve the quality of the display. We
recommend that the display be checked on actual equipment to determine whether or not to use this mode. Moreover, if the improvement to the display is inadequate even after high power mode has been set, then it is necessary to add a liquid crystal drive power supply externally.

The Internal Power Supply Shutdown Command Sequence

The sequence shown in Figure 13 is recommended for shutting down the internal power supply, first placing the
power supply in power saver mode and then turning the power supply OFF.

Figure 13

The temperature grade of the Internal Power Supply for ST7565-0A $\left(-0.15 \% /{ }^{\circ} \mathrm{C}\right)$:

Figure 14

Reference Circuit Examples(standar)

Figure 15 shows reference circuit examples.

1. When used all of the step-up circuit, voltage regulating circuit and V/F circuit
(1) When the voltage regulator internal resistor is used.
(Example where Vss2 $=$ Vss, with 4 x step-up)

(2) When the voltage regulator internal resistor is not used.
(Example where Vss2 $=$ Vss, with 4 x step-up)

2. When the voltage regulator circuit and V/F circuit alone are used
(1) When the V_{5} voltage regulator internal resistor is not used.
www.DataSheet4U.com

(2) When the V_{5} voltage regulator internal resistor is used.

3. When the built-in power circuit is used to drive a liquid crystal panel heavily loaded with AC or DC, it is recommended to connect an external resistor to stabilize potentials of V_{1}, V_{2}, V_{3} and V_{4} which are output from the built-in voltage follower.

Reference set value R4: $100 \mathrm{~K} \Omega \sim 1 \mathrm{M} \Omega$ It is recommended to set an optimum

Examples of shared reference settings When V_{5} can vary between - 8 and 12 V

Item	Set value	Units
C 1	1.0 to 4.7	uF
C 2	0.1 to 4.7	uF

C1 and C2 are determined by the size of the LCD being driven
resistance value R4 taking the liquid crystal display and the drive waveform.

Figure 15

* 1. Because the VR terminal input impedance is high, use short leads and shielded lines.
* 2. C1 and C2 are determined by the size of the LCD being driven. Select a value that will stabilize the liquid crystal drive voltage.
Example of the Process by which to Determine the Settings:
- Turn the voltage regulator circuit and voltage follower circuit ON and supply a voltage to VOUT from the outside.
- Determine C2 by displaying an LCD pattern with a heavy load (such as horizontal stripes) and selecting a C2 that stabilizes the liquid crystal drive voltages (V_{1} to V_{5}). Note that all $\mathbf{C} 2$ capacitors must have the same capacitance value.
- Next turn all the power supplies ON and determine C1.

Reference Circuit Examples

C1: 1.0uF to 4.7uF
C2: 0.1 uF to 1.0 uF
R1:30K Ω.. $300 \mathrm{~K} \Omega$

The Reset Circuit

When the /RES input comes to the " L " level, these LSIs return to the default state. Their default states are as follows:

1. Display OFF
2. Normal display
3. ADC select: Normal (ADC command D0 = " L ")
4. Power control register: (D2, D1, D0) $=(0,0,0)$
5. Serial interface internal register data clear
6. LCD power supply bias rate:
$1 / 65$ DUTY $=1 / 9$ bias
$1 / 49,1 / 55,1 / 53$ DUTY $=1 / 8$ bias
$1 / 33$ DUTY $=1 / 6$ bias
7. All-indicator lamps-on OFF (All-indicator lamps ON/OFF command D0 = "L")
8. Power saving clear
9. V_{5} voltage regulator internal resistors Ra and Rb separation
10. Output conditions of SEG and COM terminals SEG : V2/V3, COM : $\mathrm{V}_{1} / \mathrm{V}_{4}$
11. Read modify write OFF
12. Static indicator OFF Static indicator register : (D1, D2) $=$ $(0,0)$
13. Display start line set to first line
14. Column address set to Address 0
15. Page address set to Page 0
16. Common output status normal
17. V5 voltage regulator internal resistor ratio set mode clear
18. Electronic volume register set mode clear Electronic volume register:
(D5, D4, D3, D2, D1, D0) $=(1,0.0,0,0,0)$ 19. Test mode clear

On the other hand, when the reset command is used, the above default settings from 11 to 19 are only executed. When the power is turned on, the IC internal state becomes unstable, and it is necessary to initialize it using the /RES terminal. After the initialization, each input terminal should be controlled normally.
Moreover, when the control signal from the MPU is in the high impedance, an over current may flow to the IC. After applying a current, it is necessary to take proper measures to prevent the input terminal from getting into the high impedance state.
If the internal liquid crystal power supply circuit is not used on ST7565,it is necessary that /RES is " H " when the external liquid crystal power supply is turned on. This IC has the function to discharge V_{5} when /RES is "L," and the external power supply short-circuits to VDD when /RES is "L." While /RES is "L," the oscillator and the display timing generator stop, and the CL, FR, FRS and /DOF terminals are fixed to "H." The terminals D0 to D7 are not affected. The VDD level is output from the SEG and COM output terminals. This means that an internal resistor is connected between $V_{d D}$ and V_{5}.
When the internal liquid crystal power supply circuit is not used on other models of ST7565 series, it is necessary that /RES is "L" when the external liquid crystal power supply is turned on.
While /RES is "L," the oscillator works but the display timing generator stops, and the CL, FR, FRS and /DOF terminals are fixed to "H." The terminals DO to D7 are not affected.

COMMANDS

The ST7565 identify the data bus signals by a combination of A0, /RD (E), /WR(R/W) signals. Command interpretation and execution does not depend on the external clock, but rather is performed through internal timing only, and thus the processing is fast enough that normally a busy check is not required.
In the 8080 MPU interface, commands are launched by inputting a low pulse to the /RD terminal for reading, and inputting a low pulse to the MVR terminal for writing. In the 6800 Series MPU interface, the interface is placed in a read mode when an " H " signal is input to the R/W terminal and placed in a write mode when a " L " signal is input to the R/W terminal and then the command is launched by inputting a high pulse to the E terminal. Consequently, the 6800 Series MPU interface is different than the 80×86 Series MPU interface in that in the explanation of commands and the display commands the status read and display data read /RD (E) becomes " $1(\mathrm{H})$ ". In the explanations below the commands are explained using the 8080 Series MPU interface as the example.
When the serial interface is selected, the data is input in sequence starting with D7.
<Explanation of Commands>

Display ON/OFF

This command turns the display ON and OFF.

A0	/RD	R/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	1	1	1	1	Display ON Display OFF

When the display OFF command is executed when in the display all points ON mode, power saver mode is entered. See the section on the power saver for details.

Display Start Line Set

This command is used to specify the display start line address of the display data RAM shown in Figure 4. For further details see the explanation of this function in "The Line Address Circuit".

A0	$\begin{aligned} & \mathrm{E} \\ & \text { /RD } \end{aligned}$	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Line address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	0	1	
					0	0	0	0	1	0	2
											\downarrow
					1	1	1	1	1	0	62
					1	1	1	1	1	1	63

Page Address Set

This command specifies the page address corresponding to the low address when the MPU accesses the display data RAM (see Figure 4). Specifying the page address and column address enables to access a desired bit of the display data RAM. Changing the page address does not accompany a change in the status display.

A0	$\begin{aligned} & \text { E } \\ & \text { /RD } \end{aligned}$	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	1	0	1	1	0	0	0	0	0
							0	0	0	1	1
							0	0	1	0	2
							\downarrow				\downarrow
							0	1	1	1	7
							1	0	0	0	8

www.DataSheet4U.com

Column Address Set

This command specifies the column address of the display data RAM shown in Figure 4. The column address is split into two sections (the higher 4 bits and the lower 4 bits) when it is set (fundamentally, set continuously). Each time the display data RAM is accessed, the column address automatically increments (+1), making it possible for the MPU to continuously read from/write to the display data. The column address increment is topped at 83 H . This does not change the page address continuously. See the function explanation in "The Column Address Circuit," for details.

	A0	$\begin{gathered} E \\ / R D \end{gathered}$	$\begin{aligned} & \text { R/W } \\ & \text { /WR } \end{aligned}$	D7	D6	D5	D4	D3	D2	D1	D0	A7	A6	A5	A4	A3	A2	A1	A0	Column address
High bits \rightarrow	0	1	0	0	0	0	1	A7	A6	A5	A4	0	0	0	0	0	0	0	0	0
Low bits \rightarrow							0	A3	A2	A1	A0	0	0	0	0	0	0	0	1	1
												0	0	0	0	0	0	1	0	2
																\downarrow				\downarrow
												1	0	0	0	0	0	1	0	130
												1	0	0	0	0	0	1	1	131

Status Read

A0	E	R/W							
/WR	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	1	BUSY	ADC	ON/OFF	RESET	0	0	0
0									

BUSY	BUSY = 1: it indicates that either processing is occurring internally or a reset condition is in process. BUSY = 0: A new command can be accepted. if the cycle time can be satisfied, there is no need to check for BUSY conditions.
ADC	This shows the relationship between the column address and the segment driver. 0: Reverse (column address 131- $\mathrm{n} \leftrightarrow \mathrm{SEG} \mathrm{n}$) 1: Normal (column address $\mathrm{n} \leftrightarrow$ SEG n) (The ADC command switches the polarity.)
ON/OFF	ON/OFF: indicates the display ON/OFF state. 0: Display ON 1: Display OFF (This display ON/OFF command switches the polarity.)
RESET	This indicates that the chip is in the process of initialization either because of a /RES signal or because of a reset command. 0: Operating state 1: Reset in progress

Display Data Write

This command writes 8 -bit data to the specified display data RAM address. Since the column address is automatically incremented by " 1 " after the write, the MPU can write the display data.

	E	R/W		
A0	/RD	/ WR	D7 $\mathbf{D 6}$ D5 D4 D3 D2 D1 D0	
1	1	0	Write data	

Display Data Read

This command reads 8 -bit data from the specified display data RAM address. Since the column address is automatically incremented by " 1 " after the read, the CPU can continuously read multiple-word data. One dummy read is required immediately after the column address has been set. See the function explanation in "Display Data RAM" for the explanation of accessing the internal registers. When the serial interface is used, reading of the display data becomes unavailable.

	E	R/W		
A0	/RD	/WR	D7 $\mathbf{D 6}$ D5 $\mathbf{D 4}$ D3 $\mathbf{D 2}$ D1 $\mathbf{D 0}$	
1	0	1	Read data	

ADC Select (Segment Driver Direction Select)

This command can reverse the correspondence between the display RAM data column address and the segment driver output. Thus, sequence of the segment driver output pins may be reversed by the command. See the column address circuit (page $1-20$) for the detail. Increment of the column address (by " 1 ") accompanying the reading or writing the display data is done according to the column address indicated in Figure 4.

	\mathbf{E}	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0	Normal Reverse

Display Normal/Reverse

This command can reverse the lit and unlit display without overwriting the contents of the display data RAM. When this is done the display data RAM contents are maintained.

A0	$\begin{aligned} & \hline \text { E } \\ & \text { /RD } \end{aligned}$	R/W / WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1	0 1	RAM Data "H" LCD ON voltage (normal) RAM Data "L" LCD ON voltage (reverse)

Display All Points ON/OFF

This command makes it possible to force all display points ON regardless of the content of the display data RAM. The contents of the display data RAM are maintained when this is done. This command takes priority over the display normal/reverse command.

	E	R/W									
A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	0	0	Normal display mode Display all points ON

When the display is in an OFF mode, executing the display all points ON command will place the display in power save mode. For details, see the Power Save section.

www.DataSheet4U.com

LCD Bias Set

This command selects the voltage bias ratio required for the liquid crystal display.

														elect Statu		
A0	/RD	/ WR		D7	D6	D5	D4	D3	D2	D1	D0	1/65duty	1/49duty	1/33duty	1/55duty	1/53duty
0	1	0		1	0	1	0	0	0	1	0	1/9 bias	1/8 bias	1/6 bias	1/8 bias	1/8 bias
				1							1/7 bias	1/6 bias	1/5 bias	1/6 bias	1/6 bias	

Read/Modify/Write

This command is used paired with the "END" command. Once this command has been input, the display data read command does not change the column address, but only the display data write command increments (+1) the column address. This mode is maintained until the END command is input. When the END command is input, the column address returns to the address it was at when the read/modify/write command was entered. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as when there is a blanking cursor.

| | E | R/W | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A0 | /RD | /WR | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
| 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |

* Even in read/modify/write mode, other commands aside from display data read/write commands can also be used. However, the column address set command cannot be used.

Figure 24 Command Sequence For read modify write

Figure 25

End

This command releases the read/modify/write mode, and returns the column address to the address it was at when the mode was entered.

A0	$\begin{gathered} \mathrm{E} \\ / \mathrm{RD} \end{gathered}$	$\begin{gathered} \text { R/W } \\ \text { / WR } \end{gathered}$	D7	D6	D5	D4	D3	D2	D1	1 D	0
0	1	0	1	1	1	0	1	1	1	0	0

Reset

This command initializes the display start line, the column address, the page address, the common output mode, the V_{5} voltage regulator internal resistor ratio, the electronic volume, and the static indicator are reset, and the read/modify/write mode and test mode are released. There is no impact on the display data RAM. See the function explanation in "Reset" for details. The reset operation is performed after the reset command is entered.

A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

The initialization when the power supply is applied must be done through applying a reset signal to the RES terminal. The reset command must not be used instead.

Common Output Mode Select

This command can select the scan direction of the COM output terminal. For details, see the function explanation in "Common Output Mode Select Circuit."

E R/W AO /RD/ WR	D7 D6 D5 D4 D3 D2 D1 D0	Selected Mode					
			1/65duty	1/49duty	1/33duty	1/55duty	1/53duty
010	1100000 *	Normal	COM0 \rightarrow COM63	COM0 \rightarrow COM47	COM0 \rightarrow COM31	COM0 \rightarrow COM53	COM0 \rightarrow COM51
010	1	Reverse	COM63 \rightarrow COM0	COM47 \rightarrow COM0	COM31 \rightarrow COM0	COM53 \rightarrow COM0	COM51 \rightarrow COM0

* Disabled bit

www.DataSheet4U.com

Power Controller Set

This command sets the power supply circuit functions. See the function explanation in "The Power Supply Circuit," for details

A0	$\begin{gathered} \mathrm{E} \\ / \mathrm{RD} \end{gathered}$	$\begin{aligned} & \text { R/W } \\ & \text { /WR } \end{aligned}$		D6	D5	D4	D3	D2	D1	D	Selected Mode
0	1	0	0	0	1	0	1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$			Booster circuit: OFF Booster circuit: ON
									$\begin{aligned} & 0 \\ & 1 \end{aligned}$		Voltage regulator circuit: OFF Voltage regulator circuit: ON
										0	Voltage follower circuit: OFF Voltage follower circuit: ON

V5 Voltage Regulator Internal Resistor Ratio Set

This command sets the V_{5} voltage regulator internal resistor ratio. For details, see the function explanation is "The Voltage Regulator circuit " and table 11.

A0	$\begin{gathered} \mathrm{E} \\ \text { /RD } \end{gathered}$	R/W /WR	D7	D6	D5	D4	D3	D2	D1	D0	Rb/Ra Ratio
0	1	0	0	0	1		0	0 0 0 1 1	0 0 1 \downarrow 1 1	0 1 0 1 1	Small \downarrow Large

The Electronic Volume (Double Byte Command)

This command makes it possible to adjust the brightness of the liquid crystal display by controlling the LCD drive voltage V5 through the output from the voltage regulator circuits of the internal liquid crystal power supply. This command is a two byte command used as a pair with the electronic volume mode set command and the electronic volume register set command, and both commands must be issued one after the other.

The Electronic Volume Mode Set

When this command is input, the electronic volume register set command becomes enabled. Once the electronic volume mode has been set, no other command except for the electronic volume register command can be used. Once the electronic volume register set command has been used to set data into the register, then the electronic volume mode is released.

A0	/RD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

www.DataSheet4U.com

Electronic Volume Register Set

By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage V_{5} assumes one of the 64 voltage levels.
When this command is input, the electronic volume mode is released after the electronic volume register has been set.

* Inactive bit

When the electronic volume function is not used, set this to $(1,0,0,0,0,0)$

The Electronic Volume Register Set Sequence

Figure 26

Static Indicator (Double Byte Command)

This command controls the static drive system indicator display. The static indicator display is controlled by this command only, and is independent of other display control commands.
This is used when one of the static indicator liquid crystal drive electrodes is connected to the FR terminal, and the other is connected to the FRS terminal. A different pattern is recommended for the static indicator electrodes than for the dynamic drive electrodes. If the pattern is too close, it can result in deterioration of the liquid crystal and of the electrodes.
The static indicator ON command is a double byte command paired with the static indicator register set command, and thus one must execute one after the other. (The static indicator OFF command is a single byte command.)

Static Indicator ON/OFF

When the static indicator ON command is entered, the static indicator register set command is enabled. Once the static indicator ON command has been entered, no other command aside from the static indicator register set command can be used. This mode is cleared when data is set in the register by the static indicator register set command.

Static Indicator Register Set

This command sets two bits of data into the static indicator register, and is used to set the static indicator into a blinking mode.

A0	$\begin{aligned} & \mathrm{E} \\ & \text { /RD } \end{aligned}$	$\begin{aligned} & \text { R/W } \\ & \text { /WR } \end{aligned}$	D7	D6	D5	D4	D3	D2	D1	D0	Indicator Display State
0	1	0	*		*	*	*		$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	OFF ON (blinking at approximately one second intervals) ON (blinking at approximately 0.5 second intervals) ON (constantly on)

* Disabled bit

Static Indicator Register Set Sequence

Figure 27

Power Save (Compound Command)

When the display all points ON is performed while the display is in the OFF mode, the power saver mode is entered, thus greatly reducing power consumption.
The power saver mode has two different modes: the sleep mode and the standby mode. When the static indicator is OFF, it is the sleep mode that is entered. When the static indicator is ON, it is the standby mode that is entered.
In the sleep mode and in the standby mode, the display data is saved as is the operating mode that was in effect before the power saver mode was initiated, and the MPU is still able to access the display data RAM.
Refer to figure 28 for power save off sequence.

Figure 28

Sleep Mode

This stops all operations in the LCD display system, and as long as there are no accesses from the MPU, the consumption current is reduced to a value near the static current. The internal modes during sleep mode are as follows:

1. The oscillator circuit and the LCD power supply circuit are halted.
2. All liquid crystal drive circuits are halted, and the segment in common drive outputs output a VDD level.

Standby Mode

The duty LCD display system operations are halted and only the static drive system for the indicator continues to operate, providing the minimum required consumption current for the static drive. The internal modes are in the following states during standby mode.
1 The LCD power supply circuits are halted. The oscillator circuit continues to operate.
2 The duty drive system liquid crystal drive circuits are halted and the segment and common driver outputs output a VDD level. The static drive system does not operate.
When a reset command is performed while in standby mode, the system enters sleep mode.

* When an external power supply is used, it is recommended that the functions of the external power supply circuit be stopped when the power saver mode is started. For example, when the various levels of liquid crystal drive voltage are provided by external resistive voltage dividers, it is recommended that a circuit be added in order to cut the electrical current flowing through the resistive voltage divider circuit when the power saver mode is in effect. The ST7565 series chips have a liquid crystal display blanking control terminal /DOF. This terminal enters an " L " state when the power saver mode is launched. Using the output of /DOF, it is possible to stop the function of an external power supply circuit.
* When the master is turned on, the oscillator circuit is operable immediately after the powering on.

NOP

Non-OPeration Command

A0	R/WD	/WR	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	1

Test

This is a command for IC chip testing. Please do not use it. If the test command is used by accident, it can be cleared by applying a "L" signal to the /RES input by the reset command or by using an NOP.

A0	(RD	R/WR		D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	1	$*$	$*$	$*$	$*$	

* Inactive bit

Note: The ST7565 maintain their operating modes until something happens to change them. Consequently, excessive external noise, etc., can change the internal modes of the ST7565. Thus in the packaging and system design it is necessary to suppress the noise or take measure to prevent the noise from influencing the chip. Moreover, it is recommended that the operating modes be refreshed periodically to prevent the effects of unanticipated noise.

www.DataSheet4U.com

Command	Command Code										Function
	A0	/RD	/WR	D7 D6 D5 D4 D3 D2 D1 D0							
(1) Display ON/OFF	0	1	0	1	0	1	0	1			LCD display ON/OFF 0: OFF, 1: ON
(2) Display start line set	0	1	0		1 Display start address						Sets the display RAM display start line address
(3) Page address set	0	1	0	1	$0 \quad 101$ Page address						Sets the display RAM page address
(4) Column address set upper bit Column address set lower bit	0 0		0					Mos colu Leas colu		nificant address nificant address	Sets the most significant 4 bits of the display RAM column address. Sets the least significant 4 bits of the display RAM column address.
(5) Status read	0	0	1	Status				0	0	00	Reads the status data
(6) Display data write	1	1	0	Write data							Writes to the display RAM
(7) Display data read	1	0	1	Read data							Reads from the display RAM
(8) ADC select	0	1	0		0		0			$\begin{array}{ll} 0 & 0 \\ & 1 \end{array}$	Sets the display RAM address SEG output correspondence 0 : normal, 1: reverse
(9) Display normal/ reverse	0		0	1	0		0	0		$\begin{array}{r}1 \\ \\ \\ \\ \hline\end{array}$	Sets the LCD display normal/ reverse 0: normal, 1: reverse
(10) Display all points ON/OFF	0	1	0		0	1	0	0		$\begin{array}{ll}0 & 0 \\ & 1\end{array}$	Display all points 0 : normal display 1: all points ON
(11) LCD bias set	0		0		0					$\begin{array}{ll}1 & 0 \\ & 1\end{array}$	Sets the LCD drive voltage bias ratio 0: 1/9 bias, 1: 1/7 bias (ST7565)
(12) Read/modify/write	0	1	0	1	1	1	0	0	0	00	Column address increment At write: +1 At read: 0
(13) End	0	1	0	1	1	1	0	1	1	10	Clear read/modify/write
(14) Reset	0	1	0	1	1	1	0	0	0	10	Internal reset
(15) Common output mode select	0		0	1	1	0	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$			Select COM output scan direction 0 : normal direction 1: reverse direction
(16) Power control set	0	1	0	0	0		0			rating de	Select internal power supply operating mode
(17) V5 voltage regulator internal resistor ratio set	0	1	0	0	0						Select internal resistor ratio($\mathrm{Rb} / \mathrm{Ra}$) mode
(18) Electronic volume mode set Electronic volume register set	0	1	0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ctron	$\stackrel{0}{\mathrm{nic} \mathrm{vo}}$	0 olume	$\begin{array}{cc} 0 & 1 \\ e & \text { value } \end{array}$	Set the V_{5} output voltage electronic volume register
(19) Static indicator ON/OFF Static indicator register set	0		0		0	0		0	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{array}{cc} 0 & 0 \\ & 1 \\ & \text { Mode } \end{array}$	0: OFF, 1: ON Set the flashing mode
(20) Power saver											Display OFF and display all points ON compound command
(21) NOPom	0	1	0	1	1	1	0	0	0	11	Command for non-operation
(22) Test	0	1	0	1	1	1	1	*	*	*	Command for IC test. Do not use this command

(Note) *: disabled data

COMMAND DESCRIPTION

Instruction Setup: Reference

(1) Initialization

Note: With this IC, when the power is applied, LCD driving non-selective potentials V_{2} and V_{3} (SEG pin) and V_{1} and V_{4} (COM pin) are output through the LCD driving output pins SEG and COM. When electric charge is remaining in the smoothing capacitor connecting between the LCD driving voltage output pins ($\mathrm{V}_{1} \sim \mathrm{~V}_{5}$) and the VDD pin, the picture on the display may become totally dark instantaneously when the power is turned on. To avoid occurrence of such a failure, we recommend the following flow when turning on the power.

1. When the built-in power is being used immediately after turning on the power:

* The target time of 5 ms will result to vary depending on the panel characteristics and the capacitance of the smoothing capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.

Notes: Refer to respective sections or paragraphs listed below.
*1: Description of functions; Resetting circuit
*2: Command description; LCD bias setting
*3: Command description; ADC selection
*4: Command description; Common output state selection
*5: Description of functions; Power circuit \& Command description; Setting the built-in resistance radio for regulation of the V5 voltage
*6: Description of functions; Power circuit \& Command description; Electronic volume control
*7: Description of functions; Power circuit \& Command description; Power control setting
2. When the built-in power is not being used immediately after turning on the power:

* The target time of 5 ms will result to vary depending on the panel characteristics and the capacitance of the smoothing capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.

Notes: Refer to respective sections or paragraphs listed below.
*1: Description of functions; Resetting circuit
*2: Command description; LCD bias setting
*3: Command description; ADC selection
*4: Command description; Common output state selection
*5: Description of functions; Power circuit \& Command description; Setting the built-in resistance radio for regulation of the V_{5} voltage
*6: Description of functions; Power circuit \& Command description; Electronic volume control
*7: Description of functions; Power circuit \& Command description; Power control setting
*8: The power saver ON state can either be in sleep state or stand-by state.
Command description; Power saver START (multiple commands)

(2) Data Display

Notes: Reference items
*9: Command Description; Display start line set
*10: Command Description; Page address set
*11: Command Description; Column address set
*12: Command Description; Display data write
*13: Command Description; Display ON/OFF
Avoid displaying all the data at the data display start (when the display is ON) in white.

(3) Power OFF *14

Set the time (t_{L}) from reset active to turning off the VDD Vss power (VDD - Vss $=1.8 \mathrm{~V}$) longer than the time (t_{H}) when the potential of $\mathrm{V}_{5} \sim \mathrm{~V}_{1}$ becomes below the threshold voltage (approximately 1 V) of the LCD panel. For t_{H}, refer to the <Reference Data> of this event. When t_{H} is too long, insert a resistor between V_{5} and VDD to reduce it.

Notes: Reference items

*14: The logic circuit of this IC's power supply VDD - Vss controls the driver of the LCD power supply VDD - V5. So, if the power supply VDD - Vss is cut off when the LCD power supply VDD - V5 has still any residual voltage, the driver (COM. SEG) may output any uncontrolled voltage. When turning off the power, observe the following basic procedures:

- After turning off the internal power supply, make sure that the potential $\mathrm{V}_{5} \sim \mathrm{~V}_{1}$ has become below the threshold voltage of the LCD panel, and then turn off this IC's power supply (VDD - Vss). 6. Description of Function, 6.7 Power Circuit
*15: After inputting the power save command, be sure to reset the function using the /RES terminal until the power supply VDD - Vss is turned off. 7. Command Description (20) Power Save
*16: After inputting the power save command, do not reset the function using the /RES terminal until the power supply VDD - Vss is turned off. 7. Command Description (20) Power Save

Refresh

It is recommended to turn on the refresh sequence regularly at a specified interval.

Precautions on Turning off the power

<Turning the power (VDD - Vss) off>

1) Power Save (The LCD powers (VDD - V5) are off.) \rightarrow Reset input \rightarrow Power (VDD - Vss) OFF

- Observe $t_{L}>t_{H}$.
- When $\mathrm{t}_{\mathrm{L}}<\mathrm{t}_{\mathrm{H}}$, an irregular display may occur.

Set t_{L} on the MPU according to the software. t_{H} is determined according to the external capacity C 2 (smoothing capacity of $\mathrm{V}_{5} \sim \mathrm{~V}_{1}$) and the driver's discharging capacity.

<Turning the power (VDD - Vss) off : When command control is not possible.>
2) Reset (The LCD powers (VdD - Vss) are off.) \rightarrow Power (VdD - Vss) OFF

- Observe $t_{\mathrm{L}}>\mathrm{t}_{\mathrm{H}}$.
- When $t_{L}<t_{H}$, an irregular display may occur.

For t_{L}, make the power (VDD - Vss) falling characteristics longer or consider any other method. t_{H} is determined according to the external capacity C 2 (smoothing capacity of V_{5} to V_{1}) and the driver's discharging

capacity.
<Reference Data>
V_{5} voltage falling (discharge) time (t_{H}) after the process of operation \rightarrow power save \rightarrow reset.
V_{5} voltage falling (discharge) time ($\mathrm{t} \boldsymbol{\mathrm { H }}$) after the process of operation \rightarrow reset.

Figure 29

ABSOLUTE MAXIMUM RATINGS

Unless otherwise noted, Vss = 0V
Table 17

Parameter		Symbol	Conditions	Unit
Power Supply Voltage		Vss	$-0.3 \sim+6.0$	V
Power supply voltage (VDD standard)		VSS2	$-2.0 \sim-6.0$	V
Power supply voltage (VDD standard)		V5, Vout	$-20.0 \sim+0.3 \mathrm{~V}$	V
Power supply voltage (VDD standard)		$\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$	V_{5} to +0.3	V
Input voltage		Vin	-0.3 to VDD +0.3	V
Output voltage		Vo	-0.3 to VDD +0.3	V
Operating temperature		TOPR	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\left\lvert\, \begin{aligned} & \text { TCP } \\ & \text { Bare chip } \end{aligned}\right.$	Tstr	$\begin{aligned} & -55 \text { to }+100 \\ & -55 \text { to }+125 \end{aligned}$	${ }^{\circ} \mathrm{C}$

ST 7565 chip side

Figure 30
Notes and Cautions

1. The $\mathrm{V}_{5} 2, \mathrm{~V}_{1}$ to V_{5} and Vout are relative to the $\mathrm{V}_{\mathrm{d}}=0 \mathrm{~V}$ reference.
2. Insure that the voltage levels of $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$, and V_{4} are always such that $\mathrm{V}_{\mathrm{DD}} \geqq \mathrm{V}_{1} \geqq \mathrm{~V}_{2} \geqq \mathrm{~V}_{3} \geqq \mathrm{~V}_{4} \geqq \mathrm{~V}_{5}$.
3. Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover, it is recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of the LSI outside of these conditions may not only result in malfunctions of the LSI, but may have a negative impact on the LSI reliability as well.

DC CHARACTERISTICS

Unless otherwise specified, Vss $=0 \mathrm{~V}, \mathrm{~V} D \mathrm{D}=3.0 \mathrm{~V} \pm 10 \%, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$
Table 18

Item		Symbol	Condition		Rating			Units	Applicable Pin	
		Min.			Typ.	Max.				
Operating Voltage (1)			Vss			-5.5	-	-4.0	V	Vss*1
Operating Voltage (2)		Vss2	(Relative to	to VDD)	-5.5	-	-2.0	V	Vss2	
Operating Voltage (3)		Vss2	(Relative to VDD)		-13.0	-	-4.0	V	V5 *2	
		$0.4 \times \mathrm{V} 5$			-	VDD	$\mathrm{V}_{1}, \mathrm{~V}_{2}$			
		V5			-	$0.6 \times$ V5	V3, V4			
High-level Input Voltage			VIHC			$0.8 \times \mathrm{VdD}$	-	VDD	V	*3
Low-level Input Voltage			VILC			Vss	-	$0.2 \times \mathrm{VDD}$	V	*3
High-level Output Voltage		Vонс	$\mathrm{IOH}=-0.5$	5 mA	$0.8 \times \mathrm{VdD}$	-	VDD	V	*4	
Low-level Output Voltage		Volc	$\mathrm{IOL}=0.5 \mathrm{~m}$		Vss	-	$0.2 \times \mathrm{VDD}$	V	*4	
Input leakage current		ILI	$\mathrm{VIN}=\mathrm{V}_{\mathrm{DD}}$	or Vss	-1.0	-	1.0	$\mu \mathrm{A}$	*5	
Output leakage current		ILO	VIN $=$ Vdd or Vss		-3.0	-	3.0	$\mu \mathrm{A}$	*6	
Liquid Crystal Driver ONResistance		Ron	Ta $=$$25^{\circ} \mathrm{C}$(RelativeTo VDD)	$\mathrm{V}_{5}=-13.0 \mathrm{~V}$	-	2.0	3.5	K Ω	$\begin{gathered} \text { SEGn } \\ \text { COMn *7 } \end{gathered}$	
		$V_{5}=-8.0 \mathrm{~V}$		-	3.2	5.4				
Static Consumption Current			IssQ	$\mathrm{V}_{5}=-13.0 \mathrm{~V}$ (Relative To VDD)		-	0.01	2	$\mu \mathrm{A}$	Vss, Vss2
Output Leakage Current		I5Q	-			0.01	10	$\mu \mathrm{A}$	V5	
Input Terminal Capacitance		Cin	$\mathrm{Ta}=25^{\circ} \mathrm{C}$, $\mathrm{f}=1 \mathrm{MHz}$	-	5.0	8.0	pF		
Oscillator Frequency	Internal Oscillator	fosc	$1 / 65$ duty, $\mathrm{Ta}=25^{\circ} \mathrm{C}$		17	20	24	kHz	*8	
	External Input	fCL			17	20	24	kHz	CL	

Table 19

Item		Symbol	Condition	Rating			Units	$\begin{gathered} \text { Applicable } \\ \text { Pin } \end{gathered}$	
		Min.		Typ.	Max.				
	Input voltage		Vss2	(Relative To VdD)	-5.5	-	-2.0	V	Vss2
	Supply Step-up output voltage Circuit	Vout	(Relative To VDD)	-18.0	-	-	V	Vout	
	Voltage regulator Circuit Operating Voltage	Vout	(Relative To VDD)	-18.0	-	-6.0	V	Vout	
	Voltage Follower Circuit Operating Voltage	V5	(Relative To VDD)	-13.0	-	-4.0	V	V5*9	
	Base Voltage	VRS	$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C}, \text { (Relative To VDD) } \\ & -0.05 \% /{ }^{\circ} \mathrm{C} \end{aligned}$	-2.04	-2.10	-2.16	V	*10	

- Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs when an external power supply is used .

Table 20

Test pattern	Symbol	Condition	Rating			Units	Notes
			Min.	Typ.	Max.		
Display Pattern OFF	IDD	$\begin{gathered} \mathrm{VDD}=5.0 \mathrm{~V}, \\ \mathrm{~V} 5-\mathrm{VDD}=-11.0 \mathrm{~V} \end{gathered}$	-	4	12	$\mu \mathrm{A}$	*11
Display Pattern Checker	IDD	$\begin{gathered} \mathrm{VDD}=5.0 \mathrm{~V}, \\ \mathrm{~V}-\mathrm{VDD}=-11.0 \mathrm{~V} \end{gathered}$	-	7	21	$\mu \mathrm{A}$	*11

- Dynamic Consumption Current : During Display, with the Internal Power Supply ON

Table 21

Test pattern	Symbol	Condition		Rating			Units	Notes
				Min.	Typ.	Max.		
Display Pattern OFF	IDD	$\mathrm{VDD}=5.0 \mathrm{~V},$ Quad step-up voltage. $\mathrm{V} 5-\mathrm{VDD}=-11.0 \mathrm{~V}$	Normal Mode	-	70	110	$\mu \mathrm{A}$	*12
			High-Power Mode	-	90	150		
Display Pattern Checker	IDD	$\mathrm{VDD}=5.0 \mathrm{~V}$, Quad step-up voltage. $\mathrm{V} 5-\mathrm{VDD}=-11.0 \mathrm{~V}$	Normal Mode	-	95	130	$\mu \mathrm{A}$	*12
			High-Power Mode	-	130	180		

- Consumption Current at Time of Power Saver Mode: VSS =-5.0 V $\pm 10 \%$

Table 22

Item	Symbol	Condition	Rating			Units	Notes
			Min.	Typ.	Max.		
Sleep mode	IDD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	0.01	2	$\mu \mathrm{A}$	
Standby Mode	IDD	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-	4	8		

- The Relationship Between Oscillator Frequency fosc, Display Clock Frequency fcL and the Liquid Crystal Frame Rate Frequency ffr

Table 23

Item		fcL	ffr
1/65 DUTY	Used internal oscillator circuit	fosc / 4	fosc / (4*65)
	Used external display clock	External input (fcL)	fCL / 260
1/49 DUTY	Used internal oscillator circuit	fosc / 4	fosc / (4*49)
	Used external display clock	External input (fcl)	fCL / 196
1/33 DUTY	Used internal oscillator circuit	fosc / 8	fosc / (8*33)
	Used external display clock	External input (fcl)	fCL / 264
1/55 DUTY	Used internal oscillator circuit	fosc / 4	fosc / (4*55)
	Used external display clock	External input (fcl)	fCL / 220
1/53 DUTY	Used internal oscillator circuit	fosc / 4	fosc / (4*53)
	Used external display clock	External input (fcl)	fCL / 212

(fFR is the liquid crystal alternating current period, and not the FR signal period.)

References for items market with *

*1 While a broad range of operating voltages is guaranteed, performance cannot be guaranteed if there are sudden fluctuations to the voltage while the MPU is being accessed.
*2 The operating voltage range for the VDD system and the V_{5} system is. This applies when the external power supply is being used.
*3 The A0, D0 to D5, D6 (SCL), D7 (SI), RD (E), MRR (R/W), /CS1, CS2, CLS, CL, FR, M/S, C86, P/S,/DOF, /RES, IRS, and /HPM terminals.
*4 The D0 to D7, FR, FRS,/DOF, and CL terminals.
*5 The A0, /RD (E), MR (R/W), /CS1, CS2, CLS, M/S, C86, P/S,/RES, IRS, and/ HPM terminals.
*6 Applies when the D0 to D5, D6 (SCL), D7 (SI), CL, FR, and /DOF terminals are in a high impedance state.
*7 These are the resistance values for when a 0.1 V voltage is applied between the output terminal SEGn or COMn and the various power supply terminals $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right.$, and V_{4}). These are specified for the operating voltage (3) range. Ron $=0.1 \mathrm{~V} / \Delta I$ (Where ΔI is the current that flows when 0.1 V is applied while the power supply is ON .)
*8 See Table 23 for the relationship between the oscillator frequency and the frame rate frequency.
*9 The V5 voltage regulator circuit regulates within the operating voltage range of the voltage follower.
*10 This is the internal voltage reference supply for the V_{5} voltage regulator circuit. In the ST7565-0A , the temperature range approximately $-0.15 \% /{ }^{\circ} \mathrm{C}$.
*11, 12 It indicates the current consumed on ICs alone when the internal oscillator circuit and display are turned on. The ST7565 is $1 / 9$ biased. Does not include the current due to the LCD panel capacity and wiring capacity. Applicable only when there is no access from the MPU.
*12 It is the value on a ST7565-0A having the VREG temperature gradient is $-0.15 \% /{ }^{\circ} \mathrm{C}$ when the V_{5} voltage regulator internal resistor is used.

www.DataSheet4U.com

TIMING CHARACTERISTICS

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

Figure 37
Table 24

Item	Signal	Symbol	Condition	Rating		Units
				Min.	Max.	
Address hold time	A0	tah8		0	-	ns
Address setup time		taw8		0	-	
System cycle time		tcyc8		240	-	
Enable L pulse width (WRITE)	/WR	tccew		80	-	
Enable H pulse width (WRITE)		tcchw		80	-	
Enable L pulse width (READ)	/RD	tCCLR		140	-	
Enable H pulse width (READ)		tcchr		80		
WRITE Data setup time	D0 to D7	tDS8		40	-	
WRITE Address hold time		tDH8		0	-	
READ access time		tacc8	$\mathrm{CL}=100 \mathrm{pF}$	-	70	
READ Output disable time		toh8	$\mathrm{CL}=100 \mathrm{pF}$	5	50	

*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $\left(\mathrm{tr}_{\mathrm{t}}+\mathrm{tf}\right) \leqq(\mathrm{tcYC8}-\mathrm{tccLw}-\mathrm{tcchw})$ for $\left(\mathrm{tr}_{\mathrm{r}}+\mathrm{t}_{\mathrm{f}}\right) \leqq(\mathrm{tcyC8}-\mathrm{tcCLR}-\mathrm{tcCHR})$ are specified.
*2 All timing is specified using 20% and 80% of VDD as the reference.

* 3 tcCLw and tcCLR are specified as the overlap between /CS1 being " L " (CS2 $=$ " H ") and/WR and $/ R D$ being at the " L " level.

System Bus Read/Write Characteristics 2 (For the 6800 Series MPU)

Figure 38
Table 25

Item	Signal	Symbol	Condition	5 V to	Ta	
				Rating		Units
				Min.	Max.	
Address hold time	A0	tah6		0	-	ns
Address setup time		taw6		0	-	
System cycle time		tcyc6		240	-	
Enable L pulse width (WRITE)	/WR	tewLw		80	-	
Enable H pulse width (WRITE)		tEwHw		80	-	
Enable L pulse width (READ)	/RD	tEWLR		80	-	
Enable H pulse width (READ)		tEWHR		140		
WRITE Data setup time	D0 to D7	tDs6		40	-	
WRITE Address hold time		tDh6		0	-	
READ access time		tacce	$\mathrm{CL}=100 \mathrm{pF}$	-	70	
READ Output disable time		toh6	$\mathrm{CL}=100 \mathrm{pF}$	5	50	

*1 The input signal rise time and fall time ($\mathrm{tr}, \mathrm{t} f$) is specified at 15 ns or less. When the systemcycletime is extremely fast,
a $\left(\mathrm{tr}_{r}+\mathrm{t} f\right) \leqq(\mathrm{tCYC6}-\mathrm{tEWLW}-\mathrm{tEWHW})$ for $(\mathrm{tr}+\mathrm{tf}) \leqq \quad(\mathrm{tCYC6}-\mathrm{tEWLR}-\mathrm{tEWHR})$ are specified.
*2 All timing is specified using 20% and 80% of VdD as the reference.
*3 tEWLW and tEWLR are specified as the overlap between $\overline{\mathrm{CS} 1}$ being " L " (CS2 = " H ") and E .

The Serial Interface

Figure 39
Table 26
($\mathrm{VDD}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

Item	Signal	Symbol	Condition	Rating		Units
				Min.	Max.	
Serial Clock Period	SCL	tscyc		400	-	ns
SCL "H" pulse width		tshw		120	-	
SCL "L" pulse width		tsLw		120	-	
Address setup time	A0	tsas		50	-	
Address hold time		tsAH		50	-	
Data setup time	SI	tsDs		50	-	
Data hold time		tsDH		50	-	
CS-SCL time	CS	tcss		50	-	
CS-SCL time		tcSH		150	-	

*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
*2 All timing is specified using 20% and 80% of VdD as the standard.

Reset Timing

Figure 41
Table27

Item	Signal	Symbol	Condition	$\mathrm{DD}=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$			
					Rating		Units
				Min.	Typ.	Max.	
Reset time		tR		-	-	0.5	$\mu \mathrm{s}$
Reset "L" pulse width	RES	tRW		0.5	-	-	$\mu \mathrm{s}$

*1 All timing is specified with 20% and 80% of VDD as the standard.

THE MPU INTERFACE (REFERENCE EXAMPLES)

The ST7565 Series can be connected to either 80X86 Series MPUs or to 68000 Series MPUs. Moreover, using the serial interface it is possible to operate the ST7565 series chips with fewer signal lines.
The display area can be enlarged by using multiple ST7565 Series chips. When this is done, the chip select signal can be used to select the individual ICs to access.
(1) 8080 Series MPUs

Figure 42-1
(2) 6800 Series MPUs

Figure 42-2
(3) Using the Serial Interface

Figure 42-3

Revisions

Version 0.4	- Page 16	Modify Figure 4.
	- Page 55	Add Revisions page.
Version 0.5	- Page 1	Modify FEATURES.
	- Page 2	Modify PIN DIMENSIONS.
	- Page 3~6	Modify Pad Center Coordinates.
	- Page 7,10	Modify PIN DESCRIPTIONS.
	- Page 18	Modify Table 6.

[^0]: www.DataSheet4U.com

